# Stat 515: Introduction to Statistics 

Chapter 5

## Random Variable

- Random Variable - a numerical measurement of the outcome of a random phenomena
- Capital letters refer to the random variable
- Lower case letters refer to specific realizations


## Let's Apply This to Continuous Variables

- Numerically: The possible values for a continuous random variable form an interval.
- There are infinitely many numbers on any interval, so the probability at any point is 0 , so we look at the probability of intervals
- Each interval has a probability between 0 and 1
- The interval containing all possible values has probability equal to one


## Let's Apply This to Continuous Variables

- Graphically: Continuous probability functions are called densities or distributions and look like smooth curves and the area under the curve represents the probability.
- The total area under the density is 1.
- Each observable value of the infinitely many has a line straight up to the density - this line has no area.
- An interval of observable values has a collection of lines that will make a shape - this shape has an area and gives the probability of the data on this interval.


## The Uniform Distribution

- The Uniform distribution is used when a random variable $X$ is equally likely to be any number on an interval [c,d]
- Density: $f_{x}(x)=\frac{1}{d-c} I\{c \leq x \leq d\}$
- Probability X is on interval $\mathrm{A}=(\mathrm{a}, \mathrm{b})$

$$
P(X \in A)=\int_{a}^{b} f_{x}(x) d x
$$

- Mean $=\frac{\mathrm{c}+\mathrm{d}}{2}$
- Variance $=\left(\frac{d-c}{12}\right)^{2}$


## The Uniform Distribution: Notation

- $\mathbf{c}=$ the minimum of the observable values
- $\mathbf{d}=$ the maximum of the observable values
- $\mathbf{X}=$ the uniform random variable
- $\mathbf{X}$ is the random variable, $\mathbf{c}$ and $\mathbf{d}$ are parameters; $\mathbf{x}$ will be the observation


## Uniform Calculations in R

- $P(X=x)=0$ as the probability of any one value is always zero
- $P(X \leq x)=p u n i f(x, c, d)$
- $P(X \geq x)=1-\operatorname{punif}(x, c, d)$
- $P\left(x_{1} \leq X \leq x_{2}\right)=\operatorname{punif}\left(x_{2}, c, d\right)-\operatorname{punif}\left(x_{1}, c, d\right)$


## The Uniform Distribution: Example

- Consider the example where a random variable $X$ could be any number between -1 and 1 with equal probability
- Density: $\begin{aligned} f_{x}(x) & =\frac{1}{1-(-1)} I\{-1 \leq x \leq 1\} \\ & =\frac{1}{2} I\{-1 \leq x \leq 1\}\end{aligned}$
- Probability $X$ is on interval $A=(a, b)$

$$
P(X \in A)=\int_{a}^{b} 1 d x
$$

## The Uniform Distribution: Example

- Consider the example where a random variable $X$ could be any number between - 1 and 1 with equal probability
- Density: $f_{x}(x)=\frac{1}{2} I\{-1 \leq x \leq 1\}$
- Mean $=\frac{\mathrm{c}+\mathrm{d}}{2}=\frac{-1+1}{2}=0$
- Variance $=\left(\frac{d-c}{12}\right)^{2}=\left(\frac{1-(-1)}{12}\right)^{2}=\left(\frac{2}{12}\right)^{2}=\frac{1}{36}$


## The Uniform Distribution for: $\mathrm{c}=-1, \mathrm{~d}=1$

- The uniform curve is...
- Flat across observable value
- Follows Chebyshev’s Rule



## Uniform Calculations in R

- Note:
- $\mathrm{X}=\mathrm{a}$ Uniform random variable between -1 and 1
- $c=-1, d=1$
- $P(X \leq .5)=$ punif $(.5,-1,1)=.75$
- $P(X \geq .25)=1-\operatorname{punif}(.25,-1,1)=.375$
- $P(.25 \leq X \leq .5)=\operatorname{punif}(.5,-1,1)-\operatorname{punif}(.25,-1,1)$

$$
=.75-.375=.125
$$

$$
P(X \leq .5)=\operatorname{punif}(.5,-1,1)=.75
$$



$$
P(X \geq .25)=1-\operatorname{punif}(.25,-1,1)=.375
$$


$P(.25 \leq X \leq .5)=\operatorname{punif}(.5,-1,1)-\operatorname{punif}(.25,-1,1)=.125$
Note: Area $=.5 * .25=.125$


## The Exponential Distribution

- The exponential distribution is used when a random variable $X$ is more likely to be small and less likely to be large - often waiting time and spending are exponential
- Density: $f_{x}(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}} I\{x>0\}$
- Probability X is on interval $\mathrm{A}=(0, \mathrm{~b})$

$$
P(X \in A)=\int_{0}^{b} f_{x}(x) d x
$$

- Mean = $\theta$
- Variance $=\theta$


## The Exponential Distribution: Notation

- $\boldsymbol{\theta}=$ the average of the exponential random variable
- $\mathbf{X}=$ the exponential random variable
- $\mathbf{X}$ is the random variable, $\boldsymbol{\theta}$ is the parameter; $\mathbf{x}$ will be the observation


## Exponential Calculations in R

- $P(X=x)=0$ as the probability of any one value is always zero
- $P(X \leq x)=\operatorname{pexp}\left(x, \frac{1}{\theta}\right)$
- $P(X \geq x)=1-\exp \left(x, \frac{1}{\theta}\right)$
- $P\left(x_{1} \leq X \leq x_{2}\right)=\operatorname{pexp}\left(x_{2}, \frac{1}{\theta}\right)-\exp \left(x_{1}, \frac{1}{\theta}\right)$


## The Exponential Distribution: Example

- Consider the example where the average healthcare spending by an American is $\$ 6,815$.
It is expected that many will spend a small amount and less will spend a lot on healthcare.
- Density: $f_{x}(x)=\frac{1}{6815} e^{\frac{-x}{6815} I\{x>0\}}$
- Probability $X$ is on interval $A=(a, b)$

$$
P(X \in A)=\int_{a}^{b} \frac{1}{6815} e^{\frac{-x}{6815}} d x
$$

## The Exponential Distribution: Example

- Consider the example where the average healthcare spending by an American is $\$ 6,815$. It is expected that many will spend a small amount and less will spend a lot on healthcare.
- Density: $f_{x}(x)=\frac{1}{6815} e^{\frac{-x}{6815}} I\{x>0\}$
- Mean = 6,815
- Variance = 6,815


## The Exponential Distribution for: $\theta=6815$

- The exponential curve is...
- Tall near $x=0$
- The density has a horizontal asymptote at 0



## Exponential Calculations in R

- Note:
- $X=$ an exponential random variable with mean 6815
- $\theta=6815$
- $P(X \leq 1200)=\operatorname{pexp}\left(1200, \frac{1}{6815}\right)=.1614509$
- $P(X \geq 12000)=1-\exp \left(12000, \frac{1}{6815}\right)=.1719035$
- $P(1200 \leq X \leq 2400)=\operatorname{pexp}\left(1200, \frac{1}{6815}\right)-\operatorname{pexp}\left(2400, \frac{1}{6815}\right)$

$$
=.2968354-.1614509=.1614509
$$

$$
P(X \leq 1200)=\operatorname{pexp}\left(1200, \frac{1}{6815}\right)=.1614509
$$



$$
P(X \geq 12000)=1-\operatorname{pexp}\left(12000, \frac{1}{6815}\right)=.1719035
$$



$$
P(1200 \leq X \leq 2400)=\operatorname{pexp}\left(1200, \frac{1}{6815}\right)-\operatorname{pexp}\left(2400, \frac{1}{6815}\right)=.1614509
$$



## The Normal Distribution

- The Normal distribution is used when a random variable $X$ is 'normally distributed.' Many physical measurements follow this distribution.
- Density: $f_{x}(x)=\frac{1}{\sqrt{2 \pi}} e^{\wedge}\left(\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) I\{x \in \mathbb{R})$
- Probability $X$ is on interval $A=(a, b)$

$$
P(X \in A)=\int_{a}^{b} f_{x}(x) d x
$$

- $\operatorname{Mean}=\mu$
- Variance $=\sigma^{2}$


## The Normal Distribution: Notation

- $\boldsymbol{\mu}$ is the mean of the Normal random variable
- $\boldsymbol{\sigma}$ is the standard deviation of the Normal random variable
- $\mathbf{X}=$ the normal random variable
- $\mathbf{X}$ is the random variable, $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}$ are parameters; $\mathbf{x}$ will be the observation


## Remember this?



- The total probability is one (100\%)
- Now, we're using Z-scores to find the probability of other intervals not covered by the Empirical Rule - get excited!


## Normal Curve

- The normal curve is...
- Bell-shaped
- Symmetric about the mean
- Follows the Empirical Rule


## Properties of a Normal Curve

1. Symmetric around the mean
2. Highest point is at the mean=median=mode
3. Inflection points at $\mu \pm \sigma$
4. Total area under the curve is one

- Area under the curve less/greater than the mean $=.5$

5. The graph approaches zero as we go out to either side
6. The Empirical Rule applies

## Normal Curve

- If we decrease the mean our normal curve will shift to the left
- If we increase the mean our normal curve will shift to the right
- If we decrease the standard deviation our normal curve will get more narrow
- If we increase the standard deviation our normal curve gets less narrow


## Normal Curve



## Normal Calculations in R

- $P(X=x)=0$ as the probability of any one value is always zero
- $P(X \leq x)=\operatorname{pnorm}\left(x, \mu_{x}, \sigma_{x}\right)$
- $P(X \geq x)=1-\operatorname{pnorm}\left(x, \mu_{x}, \sigma_{x}\right)$
- $P\left(x_{1} \leq X \leq x_{2}\right)=\operatorname{pnorm}\left(x_{2}, \mu_{x}, \sigma_{x}\right)-\operatorname{pnorm}\left(x_{1}, \mu_{x}, \sigma_{x} a\right)$


## Z transformation for Normal Calculations

- The trick is to transform our x's to z's, to transfer from the normal distribution of $x$ to the $N(0,1)$ standard normal distribution of $z$
- The $Z$ score represents the number of standard deviations from the mean

$$
z=\frac{\text { observation }- \text { mean }}{\text { standard deviation }}=\frac{x-\mu_{x}}{\sigma_{x}}
$$

## How x's and z's Line Up



## Calculating Probabilities

- So, in terms of z we have the Empirical Rule to find probabilities between points where $z=\{-3,-2,-1,0,1,2,3\}$
- $68 \%$ of the data lies between -1 and 1
- $95 \%$ of the data lies between -2 and 2
- $99.7 \%$ of the data lies between -3 and 3


## Calculating Probabilities

- To figure out probabilities for points between these values we will look into a chart someone made for us that contains all the values in between that we would have to struggle with because they are very difficult and involve lots of Calculus
- Chart:
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf


## Calculating Probabilities

|  | B <br> $z$ | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| $\mathbf{A} 0.4$ | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .$/ 088$ | .$/ 123$ | $. / 13 /$ | .1190 | .$/ 224$ |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |

- A and B tell us that the z-score is 0.40
- A gives us the ones place and the tenths space (0.40)
- B gives us the hundredths place (0.40)


## Calculating Probabilities

| $z$ | $\begin{aligned} & \mathrm{B} \\ & .00 \end{aligned}$ | . 01 | . 02 | . 03 | . 04 | . 05 | . 06 | . 07 | . 08 | . 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | . 5000 | . 5040 | . 5080 | . 5120 | . 5160 | . 5199 | . 5239 | . 5279 | . 5319 | . 5359 |
| 0.1 | . 5398 | . 5438 | . 5478 | . 5517 | . 5557 | . 5596 | . 5636 | . 5675 | . 5714 | . 5753 |
| 0.2 | . 5793 | . 5832 | . 5871 | . 5910 | . 5948 | . 5987 | . 6026 | . 6064 | . 6103 | . 6141 |
| 0.3 | . 6179 | . 6217 | . 6255 | . 6293 | . 6331 | . 6368 | . 6406 | . 6443 | . 6480 | . 6517 |
| A(0.4) | .6554 | . 6591 | . 6628 | . 6664 | . 6700 | . 6736 | . 6772 | . 6808 | . 6844 | . 6879 |
| 0.5 | . 6915 | . 6950 | . 6985 | . 7019 | . 7054 | ./U88 | ./123 | ./13/ | ./190 | ./224 |
| 0.6 | . 7257 | . 7291 | . 7324 | . 7357 | . 7389 | . 7422 | . 7454 | . 7486 | . 7517 | . 7549 |
| 0.7 | . 7580 | . 7611 | . 7642 | . 7673 | . 7704 | . 7734 | . 7764 | . 7794 | . 7823 | . 7852 |

- C tells us that the probability that we see an observation with a z-score of 0.40 or less is .6554
- The cross-hairs created when we look right of $A$ and down from B gives us the less-than probability for that Z-score


## Calculating Probabilities

|  |  |  |  |  |  |  | B |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $z$ | .00 | .01 | .02 | .03 | .04 |  | .05 | .06 | .07 | .08 |
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | $.61 / 9$ | $.621 /$ | .0255 | .6293 | .6351 | .6368 | .6406 | .6443 | .6480 | $.651 / 1$ |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |

- A and B tell us that the $z$-score is 0.25
- A gives us the ones place and the tenths space (0.20)
- B gives us the hundredths place (0.25)


## Calculating Probabilities

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $z$ | .00 | .01 | .02 | .03 | .04 |  | .05 |  | .06 | .07 |

- C tells us that the probability that we see an observation with a z-score of 0.25 or less is .5987
- The cross-hairs created when we look right of $A$ and down from B gives us the less-than probability for that Z-score


## Z-Table

- $z=\frac{x-\mu_{x}}{\sigma_{x}}$
- We can then find $P(X<x)=P\left(Z<\frac{x-\mu_{x}}{\sigma_{x}}\right)$
in the $z$ table or using pnorm $\left(\frac{x-\mu_{x}}{\sigma_{x}}, 0,1\right)$
- We can only look up $\mathrm{P}(\mathrm{Z}<z)$ so we often have to rewrite our probabilities to look like that using rules like complements and fitting pieces
- i.e. $\mathrm{P}(X \geq x)=1-P(X<x)$


## Z-Table: Finding Probabilities

1. Make sure the data you're talking about is normally distributed

- This will be given in the problem
- If not, you can look at a histogram of the data to see whether or not the histogram is symmetric and bellshaped

2. Sketch the problem out - this helps, I promise!
3. Find the $Z$ score(s)
4. Look the $Z$ score(s) up in the probability table

## Example: Show the Empirical Rule

- Let's pretend that we didn't know the Empirical Rule and find this probability using the $R$ and $z$-table


## R: Show the Empirical Rule

- The Empirical Rule states that $68 \%$ of the data lies between $\mathrm{x}_{1}=\mu_{x}-\sigma_{x}$ and $x_{2}=\mu_{x}+\sigma_{x}$ for bell-shaped data

$$
\begin{aligned}
& \operatorname{pnorm}\left(x_{2}, \mu_{x}, \sigma_{x}\right)-\operatorname{pnorm}\left(x_{1}, \mu_{x}, \sigma_{x}\right) \\
& =.8413447-.1586553 \\
& =.6826895
\end{aligned}
$$

Note: this will work for any $\mu_{x}, \sigma_{x}$

## R: Show the Empirical Rule

- The Empirical Rule states that 95\% of the data lies between $\mathrm{x}_{1}=\mu_{x}-2 \sigma_{x}$ and $x_{2}=\mu_{x}+2 \sigma_{x}$ for bell-shaped data

$$
\begin{aligned}
& \operatorname{pnorm}\left(x_{2}, \mu_{x}, \sigma_{x}\right)-\operatorname{pnorm}\left(x_{1}, \mu_{x}, \sigma_{x}\right) \\
& =.9772499-.02275013 \\
& =.9544997
\end{aligned}
$$

Note: this will work for any $\mu_{x}, \sigma_{x}$

## R: Show the Empirical Rule

- The Empirical Rule states that $68 \%$ of the data lies between $\mathrm{x}_{1}=\mu_{x}-3 \sigma_{x}$ and $x_{2}=\mu_{x}+3 \sigma_{x}$ for bell-shaped data

$$
\begin{aligned}
& \operatorname{pnorm}\left(x_{2}, \mu_{x}, \sigma_{x}\right)-\operatorname{pnorm}\left(x_{1}, \mu_{x}, \sigma_{x}\right) \\
& =.9986501-.001349898 \\
& =.9973002
\end{aligned}
$$

Note: this will work for any $\mu_{x}, \sigma_{x}$

## Z-table: Show the Empirical Rule

The Empirical Rule states that 68\% of the data lies between $\mathrm{x}_{1}=\mu_{x}-\sigma_{x}$ and $x_{2}=\mu_{x}+\sigma_{x}$ for bell-shaped data

1. With the Empirical Rule we know that we are considering bell-shaped, normal data

## Z-Table: Show the Empirical Rule

2. We can write the following by 'fitting pieces'(the blue take away the red)

- The grey shows the difference is what we want.



## Z-Table: Show the Empirical Rule

3. Find the $z$-scores

$$
\begin{gathered}
z_{\mu-\sigma}=\frac{\left(\mu_{x}-\sigma_{x}\right)-\mu_{x}}{\sigma_{x}}=-1 \\
z_{\mu+\sigma}=\frac{\left(\mu_{x}-\sigma_{x}\right)-\mu_{x}}{\sigma_{x}}=1
\end{gathered}
$$

## Z-Table: Show the Empirical Rule

4. Find the percentiles by finding the crosshairs in the z-table

$$
\begin{gathered}
P(Z<1)=.8413 \\
P(Z<-1)=.1587
\end{gathered}
$$

So,

$$
\begin{aligned}
& \mathrm{P}\left(\mu_{x}-\sigma_{x}<X<\mu_{x}+\sigma_{x}\right)=P(-1<Z<1) \\
& =P(Z<1)-P(Z<-1) \\
& \quad=.8413-.1587=.6826
\end{aligned}
$$

## Z-table: Show the Empirical Rule

The Empirical Rule states that 95\% of the data lies between $\mathrm{x}_{1}=\mu_{x}-2 \sigma_{x}$ and $x_{2}=\mu_{x}+2 \sigma_{x}$ for bell-shaped data

1. With the Empirical Rule we know that we are considering bell-shaped, normal data

## Z-Table: Show the Empirical Rule

2. We can write the following by 'fitting pieces'(the blue take away the red)

- The grey shows the difference is what we want.



## Z-Table: Show the Empirical Rule

3. Find the $z$-scores

$$
\begin{gathered}
z_{\mu-\sigma}=\frac{\left(\mu_{x}-2 \sigma_{x}\right)-\mu_{x}}{\sigma_{x}}=-2 \\
z_{\mu+\sigma}=\frac{\left(\mu_{x}-2 \sigma_{x}\right)-\mu_{x}}{\sigma_{x}}=2
\end{gathered}
$$

## Z-Table: Show the Empirical Rule

4. Find the percentiles by finding the crosshairs in the $z$-table

$$
\begin{gathered}
P(Z<2)=.8413 \\
P(Z<-2)=.1587
\end{gathered}
$$

So,

$$
\begin{aligned}
& \mathrm{P}\left(\mu_{x}-2 \sigma_{x}<X<\mu_{x}+2 \sigma_{x}\right) \\
& =P(-2<Z<2) \\
& =P(Z<2)-P(Z<-2) \\
& =.9772-.0228=.9544
\end{aligned}
$$

## Z-table: Show the Empirical Rule

The Empirical Rule states that 99.7\% of the data lies between $\mathrm{x}_{1}=\mu_{x}-3 \sigma_{x}$ and $x_{2}=\mu_{x}+3 \sigma_{x}$ for bell-shaped data

1. With the Empirical Rule we know that we are considering bell-shaped, normal data

## Z-Table: Show the Empirical Rule

2. We can write the following by 'fitting pieces'(the blue take away the red)

- The grey shows the difference is what we want.



## Z-Table: Show the Empirical Rule

3. Find the $z$-scores

$$
\begin{aligned}
z_{\mu-\sigma} & =\frac{\left(\mu_{x}-3 \sigma_{x}\right)-\mu_{x}}{\sigma_{x}}=-3 \\
z_{\mu+\sigma} & =\frac{\left(\mu_{x}-3 \sigma_{x}\right)-\mu_{x}}{\sigma_{x}}=3
\end{aligned}
$$

## Z-Table: Show the Empirical Rule

4. Find the percentiles by finding the crosshairs in the $z$-table

$$
\begin{gathered}
P(Z<3)=.9877 \\
P(Z<-3)=.0003
\end{gathered}
$$

So,

$$
\begin{aligned}
& \mathrm{P}\left(\mu_{x}-3 \sigma_{x}<X<\mu_{x}+3 \sigma_{x}\right) \\
& =P(-3<Z<3) \\
& =P(Z<3)-P(Z<-3) \\
& =.9877-.0003=.9874
\end{aligned}
$$

## Wrap Up the Normal Distribution

- We saved the best for last - the normal distribution is vastly important to statistics, particularly when we cover the central limit theorem
- In many problems going forward it is paramount to know whether or not our data is from a normal distribution


## Is My Data Normal?

1. Look at a histogram or box plot - are they symmetric?


## Is My Data Normal?

2. Do our sample intervals match the empirical rule?

- Are $\sim 68 \%$ of the data between $\bar{x} \pm s$
- Are ${ }^{\sim} 95 \%$ of the data between $\bar{x} \pm 2 s$
- Are $\sim 99.7 \%$ of the data between $\bar{x} \pm 3 s$


## Is My Data Normal?

3. Calculate the IQR and $s$; does $\frac{\operatorname{IQR}}{s} \approx 1.3$ ?

## Is My Data Normal?

## 4. Construct a normal probability plot for the data - do the points fall mostly on the line $y=x$ ?

Normal Q-Q Plot

R commands:
qqnorm(data)
lines(seq(-4,4,.01), seq(-4,4,.01), lwd=2,col='red')


## Recall: Shape of Binomial

- The Binomial is bell-shaped for $n p \geq 15$ AND $n(1-p) \geq 15$



## Normal Approximation to the Binomial

1. Calculate $\mu \pm 3 \sigma=n p \pm \sqrt{n p q}=(\mathrm{L}, \mathrm{U})$

- $\quad$ Is $L>0$ ?
- Is $U<n$ ?

2. Recall probability rules

- $P(X<3)=P(X=2)+P(X=1)+P(X=0)$
- $P(X \leq 3)=P(X=3)+P(X=2)+P(X=1)+P(X=0)$
- $P(X>3)=P(X=4)+P(X=5)+\cdots$
- $P(X \geq 3)=P(X=3)+P(X=4)+\cdots$

3. Z-Statistic for this case

$$
z=\frac{(a+.5)-\mu}{\sigma}
$$

